RESTinio
trees.c
Go to the documentation of this file.
1 /* trees.c -- output deflated data using Huffman coding
2  * Copyright (C) 1995-2017 Jean-loup Gailly
3  * detect_data_type() function provided freely by Cosmin Truta, 2006
4  * For conditions of distribution and use, see copyright notice in zlib.h
5  */
6 
7 /*
8  * ALGORITHM
9  *
10  * The "deflation" process uses several Huffman trees. The more
11  * common source values are represented by shorter bit sequences.
12  *
13  * Each code tree is stored in a compressed form which is itself
14  * a Huffman encoding of the lengths of all the code strings (in
15  * ascending order by source values). The actual code strings are
16  * reconstructed from the lengths in the inflate process, as described
17  * in the deflate specification.
18  *
19  * REFERENCES
20  *
21  * Deutsch, L.P.,"'Deflate' Compressed Data Format Specification".
22  * Available in ftp.uu.net:/pub/archiving/zip/doc/deflate-1.1.doc
23  *
24  * Storer, James A.
25  * Data Compression: Methods and Theory, pp. 49-50.
26  * Computer Science Press, 1988. ISBN 0-7167-8156-5.
27  *
28  * Sedgewick, R.
29  * Algorithms, p290.
30  * Addison-Wesley, 1983. ISBN 0-201-06672-6.
31  */
32 
33 /* @(#) $Id$ */
34 
35 /* #define GEN_TREES_H */
36 
37 #include "deflate.h"
38 
39 #ifdef ZLIB_DEBUG
40 # include <ctype.h>
41 #endif
42 
43 /* ===========================================================================
44  * Constants
45  */
46 
47 #define MAX_BL_BITS 7
48 /* Bit length codes must not exceed MAX_BL_BITS bits */
49 
50 #define END_BLOCK 256
51 /* end of block literal code */
52 
53 #define REP_3_6 16
54 /* repeat previous bit length 3-6 times (2 bits of repeat count) */
55 
56 #define REPZ_3_10 17
57 /* repeat a zero length 3-10 times (3 bits of repeat count) */
58 
59 #define REPZ_11_138 18
60 /* repeat a zero length 11-138 times (7 bits of repeat count) */
61 
62 local const int extra_lbits[LENGTH_CODES] /* extra bits for each length code */
63  = {0,0,0,0,0,0,0,0,1,1,1,1,2,2,2,2,3,3,3,3,4,4,4,4,5,5,5,5,0};
64 
65 local const int extra_dbits[D_CODES] /* extra bits for each distance code */
66  = {0,0,0,0,1,1,2,2,3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,11,11,12,12,13,13};
67 
68 local const int extra_blbits[BL_CODES]/* extra bits for each bit length code */
69  = {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,3,7};
70 
72  = {16,17,18,0,8,7,9,6,10,5,11,4,12,3,13,2,14,1,15};
73 /* The lengths of the bit length codes are sent in order of decreasing
74  * probability, to avoid transmitting the lengths for unused bit length codes.
75  */
76 
77 /* ===========================================================================
78  * Local data. These are initialized only once.
79  */
80 
81 #define DIST_CODE_LEN 512 /* see definition of array dist_code below */
82 
83 #if defined(GEN_TREES_H) || !defined(STDC)
84 /* non ANSI compilers may not accept trees.h */
85 
86 local ct_data static_ltree[L_CODES+2];
87 /* The static literal tree. Since the bit lengths are imposed, there is no
88  * need for the L_CODES extra codes used during heap construction. However
89  * The codes 286 and 287 are needed to build a canonical tree (see _tr_init
90  * below).
91  */
92 
93 local ct_data static_dtree[D_CODES];
94 /* The static distance tree. (Actually a trivial tree since all codes use
95  * 5 bits.)
96  */
97 
98 uch _dist_code[DIST_CODE_LEN];
99 /* Distance codes. The first 256 values correspond to the distances
100  * 3 .. 258, the last 256 values correspond to the top 8 bits of
101  * the 15 bit distances.
102  */
103 
104 uch _length_code[MAX_MATCH-MIN_MATCH+1];
105 /* length code for each normalized match length (0 == MIN_MATCH) */
106 
107 local int base_length[LENGTH_CODES];
108 /* First normalized length for each code (0 = MIN_MATCH) */
109 
110 local int base_dist[D_CODES];
111 /* First normalized distance for each code (0 = distance of 1) */
112 
113 #else
114 # include "trees.h"
115 #endif /* GEN_TREES_H */
116 
118  const ct_data *static_tree; /* static tree or NULL */
119  const intf *extra_bits; /* extra bits for each code or NULL */
120  int extra_base; /* base index for extra_bits */
121  int elems; /* max number of elements in the tree */
122  int max_length; /* max bit length for the codes */
123 };
124 
126 {static_ltree, extra_lbits, LITERALS+1, L_CODES, MAX_BITS};
127 
129 {static_dtree, extra_dbits, 0, D_CODES, MAX_BITS};
130 
132 {(const ct_data *)0, extra_blbits, 0, BL_CODES, MAX_BL_BITS};
133 
134 /* ===========================================================================
135  * Local (static) routines in this file.
136  */
137 
138 local void tr_static_init OF((void));
139 local void init_block OF((deflate_state *s));
140 local void pqdownheap OF((deflate_state *s, ct_data *tree, int k));
141 local void gen_bitlen OF((deflate_state *s, tree_desc *desc));
142 local void gen_codes OF((ct_data *tree, int max_code, ushf *bl_count));
143 local void build_tree OF((deflate_state *s, tree_desc *desc));
144 local void scan_tree OF((deflate_state *s, ct_data *tree, int max_code));
145 local void send_tree OF((deflate_state *s, ct_data *tree, int max_code));
146 local int build_bl_tree OF((deflate_state *s));
147 local void send_all_trees OF((deflate_state *s, int lcodes, int dcodes,
148  int blcodes));
149 local void compress_block OF((deflate_state *s, const ct_data *ltree,
150  const ct_data *dtree));
151 local int detect_data_type OF((deflate_state *s));
152 local unsigned bi_reverse OF((unsigned value, int length));
153 local void bi_windup OF((deflate_state *s));
154 local void bi_flush OF((deflate_state *s));
155 
156 #ifdef GEN_TREES_H
157 local void gen_trees_header OF((void));
158 #endif
159 
160 #ifndef ZLIB_DEBUG
161 # define send_code(s, c, tree) send_bits(s, tree[c].Code, tree[c].Len)
162  /* Send a code of the given tree. c and tree must not have side effects */
163 
164 #else /* !ZLIB_DEBUG */
165 # define send_code(s, c, tree)
166  { if (z_verbose>2) fprintf(stderr,"\ncd %3d ",(c));
167  send_bits(s, tree[c].Code, tree[c].Len); }
168 #endif
169 
170 /* ===========================================================================
171  * Output a short LSB first on the stream.
172  * IN assertion: there is enough room in pendingBuf.
173  */
174 #define put_short(s, w) {
175  put_byte(s, (uch)((w) & 0xff));
176  put_byte(s, (uch)((ush)(w) >> 8)); \
177 }
178 
179 /* ===========================================================================
180  * Send a value on a given number of bits.
181  * IN assertion: length <= 16 and value fits in length bits.
182  */
183 #ifdef ZLIB_DEBUG
184 local void send_bits OF((deflate_state *s, int value, int length));
185 
186 local void send_bits(s, value, length)
187  deflate_state *s;
188  int value; /* value to send */
189  int length; /* number of bits */
190 {
191  Tracevv((stderr," l %2d v %4x ", length, value));
192  Assert(length > 0 && length <= 15, "invalid length");
193  s->bits_sent += (ulg)length;
194 
195  /* If not enough room in bi_buf, use (valid) bits from bi_buf and
196  * (16 - bi_valid) bits from value, leaving (width - (16-bi_valid))
197  * unused bits in value.
198  */
199  if (s->bi_valid > (int)Buf_size - length) {
200  s->bi_buf |= (ush)value << s->bi_valid;
201  put_short(s, s->bi_buf);
202  s->bi_buf = (ush)value >> (Buf_size - s->bi_valid);
203  s->bi_valid += length - Buf_size;
204  } else {
205  s->bi_buf |= (ush)value << s->bi_valid;
206  s->bi_valid += length;
207  }
208 }
209 #else /* !ZLIB_DEBUG */
210 
211 #define send_bits(s, value, length) \
212 {int len = length;
213  if (s->bi_valid > (int)Buf_size - len) {
214  int val = (int)value;
215  s->bi_buf |= (ush)val << s->bi_valid;
216  put_short(s, s->bi_buf);
217  s->bi_buf = (ush)val >> (Buf_size - s->bi_valid);
218  s->bi_valid += len - Buf_size;
219  } else {
220  s->bi_buf |= (ush)(value) << s->bi_valid;
221  s->bi_valid += len;
222  }\
223 }
224 #endif /* ZLIB_DEBUG */
225 
226 
227 /* the arguments must not have side effects */
228 
229 /* ===========================================================================
230  * Initialize the various 'constant' tables.
231  */
233 {
234 #if defined(GEN_TREES_H) || !defined(STDC)
235  static int static_init_done = 0;
236  int n; /* iterates over tree elements */
237  int bits; /* bit counter */
238  int length; /* length value */
239  int code; /* code value */
240  int dist; /* distance index */
241  ush bl_count[MAX_BITS+1];
242  /* number of codes at each bit length for an optimal tree */
243 
244  if (static_init_done) return;
245 
246  /* For some embedded targets, global variables are not initialized: */
247 #ifdef NO_INIT_GLOBAL_POINTERS
248  static_l_desc.static_tree = static_ltree;
249  static_l_desc.extra_bits = extra_lbits;
250  static_d_desc.static_tree = static_dtree;
251  static_d_desc.extra_bits = extra_dbits;
252  static_bl_desc.extra_bits = extra_blbits;
253 #endif
254 
255  /* Initialize the mapping length (0..255) -> length code (0..28) */
256  length = 0;
257  for (code = 0; code < LENGTH_CODES-1; code++) {
258  base_length[code] = length;
259  for (n = 0; n < (1<<extra_lbits[code]); n++) {
260  _length_code[length++] = (uch)code;
261  }
262  }
263  Assert (length == 256, "tr_static_init: length != 256");
264  /* Note that the length 255 (match length 258) can be represented
265  * in two different ways: code 284 + 5 bits or code 285, so we
266  * overwrite length_code[255] to use the best encoding:
267  */
268  _length_code[length-1] = (uch)code;
269 
270  /* Initialize the mapping dist (0..32K) -> dist code (0..29) */
271  dist = 0;
272  for (code = 0 ; code < 16; code++) {
273  base_dist[code] = dist;
274  for (n = 0; n < (1<<extra_dbits[code]); n++) {
275  _dist_code[dist++] = (uch)code;
276  }
277  }
278  Assert (dist == 256, "tr_static_init: dist != 256");
279  dist >>= 7; /* from now on, all distances are divided by 128 */
280  for ( ; code < D_CODES; code++) {
281  base_dist[code] = dist << 7;
282  for (n = 0; n < (1<<(extra_dbits[code]-7)); n++) {
283  _dist_code[256 + dist++] = (uch)code;
284  }
285  }
286  Assert (dist == 256, "tr_static_init: 256+dist != 512");
287 
288  /* Construct the codes of the static literal tree */
289  for (bits = 0; bits <= MAX_BITS; bits++) bl_count[bits] = 0;
290  n = 0;
291  while (n <= 143) static_ltree[n++].Len = 8, bl_count[8]++;
292  while (n <= 255) static_ltree[n++].Len = 9, bl_count[9]++;
293  while (n <= 279) static_ltree[n++].Len = 7, bl_count[7]++;
294  while (n <= 287) static_ltree[n++].Len = 8, bl_count[8]++;
295  /* Codes 286 and 287 do not exist, but we must include them in the
296  * tree construction to get a canonical Huffman tree (longest code
297  * all ones)
298  */
299  gen_codes((ct_data *)static_ltree, L_CODES+1, bl_count);
300 
301  /* The static distance tree is trivial: */
302  for (n = 0; n < D_CODES; n++) {
303  static_dtree[n].Len = 5;
304  static_dtree[n].Code = bi_reverse((unsigned)n, 5);
305  }
306  static_init_done = 1;
307 
308 # ifdef GEN_TREES_H
309  gen_trees_header();
310 # endif
311 #endif /* defined(GEN_TREES_H) || !defined(STDC) */
312 }
313 
314 /* ===========================================================================
315  * Genererate the file trees.h describing the static trees.
316  */
317 #ifdef GEN_TREES_H
318 # ifndef ZLIB_DEBUG
319 # include <stdio.h>
320 # endif
321 
322 # define SEPARATOR(i, last, width)
323  ((i) == (last)? "\n};\n\n" :
324  ((i) % (width) == (width)-1 ? ",\n" : ", "))
325 
326 void gen_trees_header()
327 {
328  FILE *header = fopen("trees.h", "w");
329  int i;
330 
331  Assert (header != NULL, "Can't open trees.h");
332  fprintf(header,
333  "/* header created automatically with -DGEN_TREES_H */\n\n");
334 
335  fprintf(header, "local const ct_data static_ltree[L_CODES+2] = {\n");
336  for (i = 0; i < L_CODES+2; i++) {
337  fprintf(header, "{{%3u},{%3u}}%s", static_ltree[i].Code,
338  static_ltree[i].Len, SEPARATOR(i, L_CODES+1, 5));
339  }
340 
341  fprintf(header, "local const ct_data static_dtree[D_CODES] = {\n");
342  for (i = 0; i < D_CODES; i++) {
343  fprintf(header, "{{%2u},{%2u}}%s", static_dtree[i].Code,
344  static_dtree[i].Len, SEPARATOR(i, D_CODES-1, 5));
345  }
346 
347  fprintf(header, "const uch ZLIB_INTERNAL _dist_code[DIST_CODE_LEN] = {\n");
348  for (i = 0; i < DIST_CODE_LEN; i++) {
349  fprintf(header, "%2u%s", _dist_code[i],
350  SEPARATOR(i, DIST_CODE_LEN-1, 20));
351  }
352 
353  fprintf(header,
354  "const uch ZLIB_INTERNAL _length_code[MAX_MATCH-MIN_MATCH+1]= {\n");
355  for (i = 0; i < MAX_MATCH-MIN_MATCH+1; i++) {
356  fprintf(header, "%2u%s", _length_code[i],
357  SEPARATOR(i, MAX_MATCH-MIN_MATCH, 20));
358  }
359 
360  fprintf(header, "local const int base_length[LENGTH_CODES] = {\n");
361  for (i = 0; i < LENGTH_CODES; i++) {
362  fprintf(header, "%1u%s", base_length[i],
363  SEPARATOR(i, LENGTH_CODES-1, 20));
364  }
365 
366  fprintf(header, "local const int base_dist[D_CODES] = {\n");
367  for (i = 0; i < D_CODES; i++) {
368  fprintf(header, "%5u%s", base_dist[i],
369  SEPARATOR(i, D_CODES-1, 10));
370  }
371 
372  fclose(header);
373 }
374 #endif /* GEN_TREES_H */
375 
376 /* ===========================================================================
377  * Initialize the tree data structures for a new zlib stream.
378  */
380  deflate_state *s;
381 {
382  tr_static_init();
383 
384  s->l_desc.dyn_tree = s->dyn_ltree;
385  s->l_desc.stat_desc = &static_l_desc;
386 
387  s->d_desc.dyn_tree = s->dyn_dtree;
388  s->d_desc.stat_desc = &static_d_desc;
389 
390  s->bl_desc.dyn_tree = s->bl_tree;
391  s->bl_desc.stat_desc = &static_bl_desc;
392 
393  s->bi_buf = 0;
394  s->bi_valid = 0;
395 #ifdef ZLIB_DEBUG
396  s->compressed_len = 0L;
397  s->bits_sent = 0L;
398 #endif
399 
400  /* Initialize the first block of the first file: */
401  init_block(s);
402 }
403 
404 /* ===========================================================================
405  * Initialize a new block.
406  */
408  deflate_state *s;
409 {
410  int n; /* iterates over tree elements */
411 
412  /* Initialize the trees. */
413  for (n = 0; n < L_CODES; n++) s->dyn_ltree[n].Freq = 0;
414  for (n = 0; n < D_CODES; n++) s->dyn_dtree[n].Freq = 0;
415  for (n = 0; n < BL_CODES; n++) s->bl_tree[n].Freq = 0;
416 
417  s->dyn_ltree[END_BLOCK].Freq = 1;
418  s->opt_len = s->static_len = 0L;
419  s->last_lit = s->matches = 0;
420 }
421 
422 #define SMALLEST 1
423 /* Index within the heap array of least frequent node in the Huffman tree */
424 
425 
426 /* ===========================================================================
427  * Remove the smallest element from the heap and recreate the heap with
428  * one less element. Updates heap and heap_len.
429  */
430 #define pqremove(s, tree, top) \
431 {
432  top = s->heap[SMALLEST];
433  s->heap[SMALLEST] = s->heap[s->heap_len--];
434  pqdownheap(s, tree, SMALLEST); \
435 }
436 
437 /* ===========================================================================
438  * Compares to subtrees, using the tree depth as tie breaker when
439  * the subtrees have equal frequency. This minimizes the worst case length.
440  */
441 #define smaller(tree, n, m, depth)
442  (tree[n].Freq < tree[m].Freq ||
443  (tree[n].Freq == tree[m].Freq && depth[n] <= depth[m]))
444 
445 /* ===========================================================================
446  * Restore the heap property by moving down the tree starting at node k,
447  * exchanging a node with the smallest of its two sons if necessary, stopping
448  * when the heap property is re-established (each father smaller than its
449  * two sons).
450  */
451 local void pqdownheap(s, tree, k)
452  deflate_state *s;
453  ct_data *tree; /* the tree to restore */
454  int k; /* node to move down */
455 {
456  int v = s->heap[k];
457  int j = k << 1; /* left son of k */
458  while (j <= s->heap_len) {
459  /* Set j to the smallest of the two sons: */
460  if (j < s->heap_len &&
461  smaller(tree, s->heap[j+1], s->heap[j], s->depth)) {
462  j++;
463  }
464  /* Exit if v is smaller than both sons */
465  if (smaller(tree, v, s->heap[j], s->depth)) break;
466 
467  /* Exchange v with the smallest son */
468  s->heap[k] = s->heap[j]; k = j;
469 
470  /* And continue down the tree, setting j to the left son of k */
471  j <<= 1;
472  }
473  s->heap[k] = v;
474 }
475 
476 /* ===========================================================================
477  * Compute the optimal bit lengths for a tree and update the total bit length
478  * for the current block.
479  * IN assertion: the fields freq and dad are set, heap[heap_max] and
480  * above are the tree nodes sorted by increasing frequency.
481  * OUT assertions: the field len is set to the optimal bit length, the
482  * array bl_count contains the frequencies for each bit length.
483  * The length opt_len is updated; static_len is also updated if stree is
484  * not null.
485  */
486 local void gen_bitlen(s, desc)
487  deflate_state *s;
488  tree_desc *desc; /* the tree descriptor */
489 {
490  ct_data *tree = desc->dyn_tree;
491  int max_code = desc->max_code;
492  const ct_data *stree = desc->stat_desc->static_tree;
493  const intf *extra = desc->stat_desc->extra_bits;
494  int base = desc->stat_desc->extra_base;
495  int max_length = desc->stat_desc->max_length;
496  int h; /* heap index */
497  int n, m; /* iterate over the tree elements */
498  int bits; /* bit length */
499  int xbits; /* extra bits */
500  ush f; /* frequency */
501  int overflow = 0; /* number of elements with bit length too large */
502 
503  for (bits = 0; bits <= MAX_BITS; bits++) s->bl_count[bits] = 0;
504 
505  /* In a first pass, compute the optimal bit lengths (which may
506  * overflow in the case of the bit length tree).
507  */
508  tree[s->heap[s->heap_max]].Len = 0; /* root of the heap */
509 
510  for (h = s->heap_max+1; h < HEAP_SIZE; h++) {
511  n = s->heap[h];
512  bits = tree[tree[n].Dad].Len + 1;
513  if (bits > max_length) bits = max_length, overflow++;
514  tree[n].Len = (ush)bits;
515  /* We overwrite tree[n].Dad which is no longer needed */
516 
517  if (n > max_code) continue; /* not a leaf node */
518 
519  s->bl_count[bits]++;
520  xbits = 0;
521  if (n >= base) xbits = extra[n-base];
522  f = tree[n].Freq;
523  s->opt_len += (ulg)f * (unsigned)(bits + xbits);
524  if (stree) s->static_len += (ulg)f * (unsigned)(stree[n].Len + xbits);
525  }
526  if (overflow == 0) return;
527 
528  Tracev((stderr,"\nbit length overflow\n"));
529  /* This happens for example on obj2 and pic of the Calgary corpus */
530 
531  /* Find the first bit length which could increase: */
532  do {
533  bits = max_length-1;
534  while (s->bl_count[bits] == 0) bits--;
535  s->bl_count[bits]--; /* move one leaf down the tree */
536  s->bl_count[bits+1] += 2; /* move one overflow item as its brother */
537  s->bl_count[max_length]--;
538  /* The brother of the overflow item also moves one step up,
539  * but this does not affect bl_count[max_length]
540  */
541  overflow -= 2;
542  } while (overflow > 0);
543 
544  /* Now recompute all bit lengths, scanning in increasing frequency.
545  * h is still equal to HEAP_SIZE. (It is simpler to reconstruct all
546  * lengths instead of fixing only the wrong ones. This idea is taken
547  * from 'ar' written by Haruhiko Okumura.)
548  */
549  for (bits = max_length; bits != 0; bits--) {
550  n = s->bl_count[bits];
551  while (n != 0) {
552  m = s->heap[--h];
553  if (m > max_code) continue;
554  if ((unsigned) tree[m].Len != (unsigned) bits) {
555  Tracev((stderr,"code %d bits %d->%d\n", m, tree[m].Len, bits));
556  s->opt_len += ((ulg)bits - tree[m].Len) * tree[m].Freq;
557  tree[m].Len = (ush)bits;
558  }
559  n--;
560  }
561  }
562 }
563 
564 /* ===========================================================================
565  * Generate the codes for a given tree and bit counts (which need not be
566  * optimal).
567  * IN assertion: the array bl_count contains the bit length statistics for
568  * the given tree and the field len is set for all tree elements.
569  * OUT assertion: the field code is set for all tree elements of non
570  * zero code length.
571  */
572 local void gen_codes (tree, max_code, bl_count)
573  ct_data *tree; /* the tree to decorate */
574  int max_code; /* largest code with non zero frequency */
575  ushf *bl_count; /* number of codes at each bit length */
576 {
577  ush next_code[MAX_BITS+1]; /* next code value for each bit length */
578  unsigned code = 0; /* running code value */
579  int bits; /* bit index */
580  int n; /* code index */
581 
582  /* The distribution counts are first used to generate the code values
583  * without bit reversal.
584  */
585  for (bits = 1; bits <= MAX_BITS; bits++) {
586  code = (code + bl_count[bits-1]) << 1;
587  next_code[bits] = (ush)code;
588  }
589  /* Check that the bit counts in bl_count are consistent. The last code
590  * must be all ones.
591  */
592  Assert (code + bl_count[MAX_BITS]-1 == (1<<MAX_BITS)-1,
593  "inconsistent bit counts");
594  Tracev((stderr,"\ngen_codes: max_code %d ", max_code));
595 
596  for (n = 0; n <= max_code; n++) {
597  int len = tree[n].Len;
598  if (len == 0) continue;
599  /* Now reverse the bits */
600  tree[n].Code = (ush)bi_reverse(next_code[len]++, len);
601 
602  Tracecv(tree != static_ltree, (stderr,"\nn %3d %c l %2d c %4x (%x) ",
603  n, (isgraph(n) ? n : ' '), len, tree[n].Code, next_code[len]-1));
604  }
605 }
606 
607 /* ===========================================================================
608  * Construct one Huffman tree and assigns the code bit strings and lengths.
609  * Update the total bit length for the current block.
610  * IN assertion: the field freq is set for all tree elements.
611  * OUT assertions: the fields len and code are set to the optimal bit length
612  * and corresponding code. The length opt_len is updated; static_len is
613  * also updated if stree is not null. The field max_code is set.
614  */
615 local void build_tree(s, desc)
616  deflate_state *s;
617  tree_desc *desc; /* the tree descriptor */
618 {
619  ct_data *tree = desc->dyn_tree;
620  const ct_data *stree = desc->stat_desc->static_tree;
621  int elems = desc->stat_desc->elems;
622  int n, m; /* iterate over heap elements */
623  int max_code = -1; /* largest code with non zero frequency */
624  int node; /* new node being created */
625 
626  /* Construct the initial heap, with least frequent element in
627  * heap[SMALLEST]. The sons of heap[n] are heap[2*n] and heap[2*n+1].
628  * heap[0] is not used.
629  */
630  s->heap_len = 0, s->heap_max = HEAP_SIZE;
631 
632  for (n = 0; n < elems; n++) {
633  if (tree[n].Freq != 0) {
634  s->heap[++(s->heap_len)] = max_code = n;
635  s->depth[n] = 0;
636  } else {
637  tree[n].Len = 0;
638  }
639  }
640 
641  /* The pkzip format requires that at least one distance code exists,
642  * and that at least one bit should be sent even if there is only one
643  * possible code. So to avoid special checks later on we force at least
644  * two codes of non zero frequency.
645  */
646  while (s->heap_len < 2) {
647  node = s->heap[++(s->heap_len)] = (max_code < 2 ? ++max_code : 0);
648  tree[node].Freq = 1;
649  s->depth[node] = 0;
650  s->opt_len--; if (stree) s->static_len -= stree[node].Len;
651  /* node is 0 or 1 so it does not have extra bits */
652  }
653  desc->max_code = max_code;
654 
655  /* The elements heap[heap_len/2+1 .. heap_len] are leaves of the tree,
656  * establish sub-heaps of increasing lengths:
657  */
658  for (n = s->heap_len/2; n >= 1; n--) pqdownheap(s, tree, n);
659 
660  /* Construct the Huffman tree by repeatedly combining the least two
661  * frequent nodes.
662  */
663  node = elems; /* next internal node of the tree */
664  do {
665  pqremove(s, tree, n); /* n = node of least frequency */
666  m = s->heap[SMALLEST]; /* m = node of next least frequency */
667 
668  s->heap[--(s->heap_max)] = n; /* keep the nodes sorted by frequency */
669  s->heap[--(s->heap_max)] = m;
670 
671  /* Create a new node father of n and m */
672  tree[node].Freq = tree[n].Freq + tree[m].Freq;
673  s->depth[node] = (uch)((s->depth[n] >= s->depth[m] ?
674  s->depth[n] : s->depth[m]) + 1);
675  tree[n].Dad = tree[m].Dad = (ush)node;
676 #ifdef DUMP_BL_TREE
677  if (tree == s->bl_tree) {
678  fprintf(stderr,"\nnode %d(%d), sons %d(%d) %d(%d)",
679  node, tree[node].Freq, n, tree[n].Freq, m, tree[m].Freq);
680  }
681 #endif
682  /* and insert the new node in the heap */
683  s->heap[SMALLEST] = node++;
684  pqdownheap(s, tree, SMALLEST);
685 
686  } while (s->heap_len >= 2);
687 
688  s->heap[--(s->heap_max)] = s->heap[SMALLEST];
689 
690  /* At this point, the fields freq and dad are set. We can now
691  * generate the bit lengths.
692  */
693  gen_bitlen(s, (tree_desc *)desc);
694 
695  /* The field len is now set, we can generate the bit codes */
696  gen_codes ((ct_data *)tree, max_code, s->bl_count);
697 }
698 
699 /* ===========================================================================
700  * Scan a literal or distance tree to determine the frequencies of the codes
701  * in the bit length tree.
702  */
703 local void scan_tree (s, tree, max_code)
704  deflate_state *s;
705  ct_data *tree; /* the tree to be scanned */
706  int max_code; /* and its largest code of non zero frequency */
707 {
708  int n; /* iterates over all tree elements */
709  int prevlen = -1; /* last emitted length */
710  int curlen; /* length of current code */
711  int nextlen = tree[0].Len; /* length of next code */
712  int count = 0; /* repeat count of the current code */
713  int max_count = 7; /* max repeat count */
714  int min_count = 4; /* min repeat count */
715 
716  if (nextlen == 0) max_count = 138, min_count = 3;
717  tree[max_code+1].Len = (ush)0xffff; /* guard */
718 
719  for (n = 0; n <= max_code; n++) {
720  curlen = nextlen; nextlen = tree[n+1].Len;
721  if (++count < max_count && curlen == nextlen) {
722  continue;
723  } else if (count < min_count) {
724  s->bl_tree[curlen].Freq += count;
725  } else if (curlen != 0) {
726  if (curlen != prevlen) s->bl_tree[curlen].Freq++;
727  s->bl_tree[REP_3_6].Freq++;
728  } else if (count <= 10) {
729  s->bl_tree[REPZ_3_10].Freq++;
730  } else {
731  s->bl_tree[REPZ_11_138].Freq++;
732  }
733  count = 0; prevlen = curlen;
734  if (nextlen == 0) {
735  max_count = 138, min_count = 3;
736  } else if (curlen == nextlen) {
737  max_count = 6, min_count = 3;
738  } else {
739  max_count = 7, min_count = 4;
740  }
741  }
742 }
743 
744 /* ===========================================================================
745  * Send a literal or distance tree in compressed form, using the codes in
746  * bl_tree.
747  */
748 local void send_tree (s, tree, max_code)
749  deflate_state *s;
750  ct_data *tree; /* the tree to be scanned */
751  int max_code; /* and its largest code of non zero frequency */
752 {
753  int n; /* iterates over all tree elements */
754  int prevlen = -1; /* last emitted length */
755  int curlen; /* length of current code */
756  int nextlen = tree[0].Len; /* length of next code */
757  int count = 0; /* repeat count of the current code */
758  int max_count = 7; /* max repeat count */
759  int min_count = 4; /* min repeat count */
760 
761  /* tree[max_code+1].Len = -1; */ /* guard already set */
762  if (nextlen == 0) max_count = 138, min_count = 3;
763 
764  for (n = 0; n <= max_code; n++) {
765  curlen = nextlen; nextlen = tree[n+1].Len;
766  if (++count < max_count && curlen == nextlen) {
767  continue;
768  } else if (count < min_count) {
769  do { send_code(s, curlen, s->bl_tree); } while (--count != 0);
770 
771  } else if (curlen != 0) {
772  if (curlen != prevlen) {
773  send_code(s, curlen, s->bl_tree); count--;
774  }
775  Assert(count >= 3 && count <= 6, " 3_6?");
776  send_code(s, REP_3_6, s->bl_tree); send_bits(s, count-3, 2);
777 
778  } else if (count <= 10) {
779  send_code(s, REPZ_3_10, s->bl_tree); send_bits(s, count-3, 3);
780 
781  } else {
782  send_code(s, REPZ_11_138, s->bl_tree); send_bits(s, count-11, 7);
783  }
784  count = 0; prevlen = curlen;
785  if (nextlen == 0) {
786  max_count = 138, min_count = 3;
787  } else if (curlen == nextlen) {
788  max_count = 6, min_count = 3;
789  } else {
790  max_count = 7, min_count = 4;
791  }
792  }
793 }
794 
795 /* ===========================================================================
796  * Construct the Huffman tree for the bit lengths and return the index in
797  * bl_order of the last bit length code to send.
798  */
800  deflate_state *s;
801 {
802  int max_blindex; /* index of last bit length code of non zero freq */
803 
804  /* Determine the bit length frequencies for literal and distance trees */
805  scan_tree(s, (ct_data *)s->dyn_ltree, s->l_desc.max_code);
806  scan_tree(s, (ct_data *)s->dyn_dtree, s->d_desc.max_code);
807 
808  /* Build the bit length tree: */
809  build_tree(s, (tree_desc *)(&(s->bl_desc)));
810  /* opt_len now includes the length of the tree representations, except
811  * the lengths of the bit lengths codes and the 5+5+4 bits for the counts.
812  */
813 
814  /* Determine the number of bit length codes to send. The pkzip format
815  * requires that at least 4 bit length codes be sent. (appnote.txt says
816  * 3 but the actual value used is 4.)
817  */
818  for (max_blindex = BL_CODES-1; max_blindex >= 3; max_blindex--) {
819  if (s->bl_tree[bl_order[max_blindex]].Len != 0) break;
820  }
821  /* Update opt_len to include the bit length tree and counts */
822  s->opt_len += 3*((ulg)max_blindex+1) + 5+5+4;
823  Tracev((stderr, "\ndyn trees: dyn %ld, stat %ld",
824  s->opt_len, s->static_len));
825 
826  return max_blindex;
827 }
828 
829 /* ===========================================================================
830  * Send the header for a block using dynamic Huffman trees: the counts, the
831  * lengths of the bit length codes, the literal tree and the distance tree.
832  * IN assertion: lcodes >= 257, dcodes >= 1, blcodes >= 4.
833  */
834 local void send_all_trees(s, lcodes, dcodes, blcodes)
835  deflate_state *s;
836  int lcodes, dcodes, blcodes; /* number of codes for each tree */
837 {
838  int rank; /* index in bl_order */
839 
840  Assert (lcodes >= 257 && dcodes >= 1 && blcodes >= 4, "not enough codes");
841  Assert (lcodes <= L_CODES && dcodes <= D_CODES && blcodes <= BL_CODES,
842  "too many codes");
843  Tracev((stderr, "\nbl counts: "));
844  send_bits(s, lcodes-257, 5); /* not +255 as stated in appnote.txt */
845  send_bits(s, dcodes-1, 5);
846  send_bits(s, blcodes-4, 4); /* not -3 as stated in appnote.txt */
847  for (rank = 0; rank < blcodes; rank++) {
848  Tracev((stderr, "\nbl code %2d ", bl_order[rank]));
849  send_bits(s, s->bl_tree[bl_order[rank]].Len, 3);
850  }
851  Tracev((stderr, "\nbl tree: sent %ld", s->bits_sent));
852 
853  send_tree(s, (ct_data *)s->dyn_ltree, lcodes-1); /* literal tree */
854  Tracev((stderr, "\nlit tree: sent %ld", s->bits_sent));
855 
856  send_tree(s, (ct_data *)s->dyn_dtree, dcodes-1); /* distance tree */
857  Tracev((stderr, "\ndist tree: sent %ld", s->bits_sent));
858 }
859 
860 /* ===========================================================================
861  * Send a stored block
862  */
863 void ZLIB_INTERNAL _tr_stored_block(s, buf, stored_len, last)
864  deflate_state *s;
865  charf *buf; /* input block */
866  ulg stored_len; /* length of input block */
867  int last; /* one if this is the last block for a file */
868 {
869  send_bits(s, (STORED_BLOCK<<1)+last, 3); /* send block type */
870  bi_windup(s); /* align on byte boundary */
871  put_short(s, (ush)stored_len);
872  put_short(s, (ush)~stored_len);
873  zmemcpy(s->pending_buf + s->pending, (Bytef *)buf, stored_len);
874  s->pending += stored_len;
875 #ifdef ZLIB_DEBUG
876  s->compressed_len = (s->compressed_len + 3 + 7) & (ulg)~7L;
877  s->compressed_len += (stored_len + 4) << 3;
878  s->bits_sent += 2*16;
879  s->bits_sent += stored_len<<3;
880 #endif
881 }
882 
883 /* ===========================================================================
884  * Flush the bits in the bit buffer to pending output (leaves at most 7 bits)
885  */
887  deflate_state *s;
888 {
889  bi_flush(s);
890 }
891 
892 /* ===========================================================================
893  * Send one empty static block to give enough lookahead for inflate.
894  * This takes 10 bits, of which 7 may remain in the bit buffer.
895  */
897  deflate_state *s;
898 {
899  send_bits(s, STATIC_TREES<<1, 3);
900  send_code(s, END_BLOCK, static_ltree);
901 #ifdef ZLIB_DEBUG
902  s->compressed_len += 10L; /* 3 for block type, 7 for EOB */
903 #endif
904  bi_flush(s);
905 }
906 
907 /* ===========================================================================
908  * Determine the best encoding for the current block: dynamic trees, static
909  * trees or store, and write out the encoded block.
910  */
911 void ZLIB_INTERNAL _tr_flush_block(s, buf, stored_len, last)
912  deflate_state *s;
913  charf *buf; /* input block, or NULL if too old */
914  ulg stored_len; /* length of input block */
915  int last; /* one if this is the last block for a file */
916 {
917  ulg opt_lenb, static_lenb; /* opt_len and static_len in bytes */
918  int max_blindex = 0; /* index of last bit length code of non zero freq */
919 
920  /* Build the Huffman trees unless a stored block is forced */
921  if (s->level > 0) {
922 
923  /* Check if the file is binary or text */
924  if (s->strm->data_type == Z_UNKNOWN)
925  s->strm->data_type = detect_data_type(s);
926 
927  /* Construct the literal and distance trees */
928  build_tree(s, (tree_desc *)(&(s->l_desc)));
929  Tracev((stderr, "\nlit data: dyn %ld, stat %ld", s->opt_len,
930  s->static_len));
931 
932  build_tree(s, (tree_desc *)(&(s->d_desc)));
933  Tracev((stderr, "\ndist data: dyn %ld, stat %ld", s->opt_len,
934  s->static_len));
935  /* At this point, opt_len and static_len are the total bit lengths of
936  * the compressed block data, excluding the tree representations.
937  */
938 
939  /* Build the bit length tree for the above two trees, and get the index
940  * in bl_order of the last bit length code to send.
941  */
942  max_blindex = build_bl_tree(s);
943 
944  /* Determine the best encoding. Compute the block lengths in bytes. */
945  opt_lenb = (s->opt_len+3+7)>>3;
946  static_lenb = (s->static_len+3+7)>>3;
947 
948  Tracev((stderr, "\nopt %lu(%lu) stat %lu(%lu) stored %lu lit %u ",
949  opt_lenb, s->opt_len, static_lenb, s->static_len, stored_len,
950  s->last_lit));
951 
952  if (static_lenb <= opt_lenb) opt_lenb = static_lenb;
953 
954  } else {
955  Assert(buf != (char*)0, "lost buf");
956  opt_lenb = static_lenb = stored_len + 5; /* force a stored block */
957  }
958 
959 #ifdef FORCE_STORED
960  if (buf != (char*)0) { /* force stored block */
961 #else
962  if (stored_len+4 <= opt_lenb && buf != (char*)0) {
963  /* 4: two words for the lengths */
964 #endif
965  /* The test buf != NULL is only necessary if LIT_BUFSIZE > WSIZE.
966  * Otherwise we can't have processed more than WSIZE input bytes since
967  * the last block flush, because compression would have been
968  * successful. If LIT_BUFSIZE <= WSIZE, it is never too late to
969  * transform a block into a stored block.
970  */
971  _tr_stored_block(s, buf, stored_len, last);
972 
973 #ifdef FORCE_STATIC
974  } else if (static_lenb >= 0) { /* force static trees */
975 #else
976  } else if (s->strategy == Z_FIXED || static_lenb == opt_lenb) {
977 #endif
978  send_bits(s, (STATIC_TREES<<1)+last, 3);
979  compress_block(s, (const ct_data *)static_ltree,
980  (const ct_data *)static_dtree);
981 #ifdef ZLIB_DEBUG
982  s->compressed_len += 3 + s->static_len;
983 #endif
984  } else {
985  send_bits(s, (DYN_TREES<<1)+last, 3);
986  send_all_trees(s, s->l_desc.max_code+1, s->d_desc.max_code+1,
987  max_blindex+1);
988  compress_block(s, (const ct_data *)s->dyn_ltree,
989  (const ct_data *)s->dyn_dtree);
990 #ifdef ZLIB_DEBUG
991  s->compressed_len += 3 + s->opt_len;
992 #endif
993  }
994  Assert (s->compressed_len == s->bits_sent, "bad compressed size");
995  /* The above check is made mod 2^32, for files larger than 512 MB
996  * and uLong implemented on 32 bits.
997  */
998  init_block(s);
999 
1000  if (last) {
1001  bi_windup(s);
1002 #ifdef ZLIB_DEBUG
1003  s->compressed_len += 7; /* align on byte boundary */
1004 #endif
1005  }
1006  Tracev((stderr,"\ncomprlen %lu(%lu) ", s->compressed_len>>3,
1007  s->compressed_len-7*last));
1008 }
1009 
1010 /* ===========================================================================
1011  * Save the match info and tally the frequency counts. Return true if
1012  * the current block must be flushed.
1013  */
1014 int ZLIB_INTERNAL _tr_tally (s, dist, lc)
1015  deflate_state *s;
1016  unsigned dist; /* distance of matched string */
1017  unsigned lc; /* match length-MIN_MATCH or unmatched char (if dist==0) */
1018 {
1019  s->d_buf[s->last_lit] = (ush)dist;
1020  s->l_buf[s->last_lit++] = (uch)lc;
1021  if (dist == 0) {
1022  /* lc is the unmatched char */
1023  s->dyn_ltree[lc].Freq++;
1024  } else {
1025  s->matches++;
1026  /* Here, lc is the match length - MIN_MATCH */
1027  dist--; /* dist = match distance - 1 */
1028  Assert((ush)dist < (ush)MAX_DIST(s) &&
1029  (ush)lc <= (ush)(MAX_MATCH-MIN_MATCH) &&
1030  (ush)d_code(dist) < (ush)D_CODES, "_tr_tally: bad match");
1031 
1032  s->dyn_ltree[_length_code[lc]+LITERALS+1].Freq++;
1033  s->dyn_dtree[d_code(dist)].Freq++;
1034  }
1035 
1036 #ifdef TRUNCATE_BLOCK
1037  /* Try to guess if it is profitable to stop the current block here */
1038  if ((s->last_lit & 0x1fff) == 0 && s->level > 2) {
1039  /* Compute an upper bound for the compressed length */
1040  ulg out_length = (ulg)s->last_lit*8L;
1041  ulg in_length = (ulg)((long)s->strstart - s->block_start);
1042  int dcode;
1043  for (dcode = 0; dcode < D_CODES; dcode++) {
1044  out_length += (ulg)s->dyn_dtree[dcode].Freq *
1045  (5L+extra_dbits[dcode]);
1046  }
1047  out_length >>= 3;
1048  Tracev((stderr,"\nlast_lit %u, in %ld, out ~%ld(%ld%%) ",
1049  s->last_lit, in_length, out_length,
1050  100L - out_length*100L/in_length));
1051  if (s->matches < s->last_lit/2 && out_length < in_length/2) return 1;
1052  }
1053 #endif
1054  return (s->last_lit == s->lit_bufsize-1);
1055  /* We avoid equality with lit_bufsize because of wraparound at 64K
1056  * on 16 bit machines and because stored blocks are restricted to
1057  * 64K-1 bytes.
1058  */
1059 }
1060 
1061 /* ===========================================================================
1062  * Send the block data compressed using the given Huffman trees
1063  */
1064 local void compress_block(s, ltree, dtree)
1065  deflate_state *s;
1066  const ct_data *ltree; /* literal tree */
1067  const ct_data *dtree; /* distance tree */
1068 {
1069  unsigned dist; /* distance of matched string */
1070  int lc; /* match length or unmatched char (if dist == 0) */
1071  unsigned lx = 0; /* running index in l_buf */
1072  unsigned code; /* the code to send */
1073  int extra; /* number of extra bits to send */
1074 
1075  if (s->last_lit != 0) do {
1076  dist = s->d_buf[lx];
1077  lc = s->l_buf[lx++];
1078  if (dist == 0) {
1079  send_code(s, lc, ltree); /* send a literal byte */
1080  Tracecv(isgraph(lc), (stderr," '%c' ", lc));
1081  } else {
1082  /* Here, lc is the match length - MIN_MATCH */
1083  code = _length_code[lc];
1084  send_code(s, code+LITERALS+1, ltree); /* send the length code */
1085  extra = extra_lbits[code];
1086  if (extra != 0) {
1087  lc -= base_length[code];
1088  send_bits(s, lc, extra); /* send the extra length bits */
1089  }
1090  dist--; /* dist is now the match distance - 1 */
1091  code = d_code(dist);
1092  Assert (code < D_CODES, "bad d_code");
1093 
1094  send_code(s, code, dtree); /* send the distance code */
1095  extra = extra_dbits[code];
1096  if (extra != 0) {
1097  dist -= (unsigned)base_dist[code];
1098  send_bits(s, dist, extra); /* send the extra distance bits */
1099  }
1100  } /* literal or match pair ? */
1101 
1102  /* Check that the overlay between pending_buf and d_buf+l_buf is ok: */
1103  Assert((uInt)(s->pending) < s->lit_bufsize + 2*lx,
1104  "pendingBuf overflow");
1105 
1106  } while (lx < s->last_lit);
1107 
1108  send_code(s, END_BLOCK, ltree);
1109 }
1110 
1111 /* ===========================================================================
1112  * Check if the data type is TEXT or BINARY, using the following algorithm:
1113  * - TEXT if the two conditions below are satisfied:
1114  * a) There are no non-portable control characters belonging to the
1115  * "black list" (0..6, 14..25, 28..31).
1116  * b) There is at least one printable character belonging to the
1117  * "white list" (9 {TAB}, 10 {LF}, 13 {CR}, 32..255).
1118  * - BINARY otherwise.
1119  * - The following partially-portable control characters form a
1120  * "gray list" that is ignored in this detection algorithm:
1121  * (7 {BEL}, 8 {BS}, 11 {VT}, 12 {FF}, 26 {SUB}, 27 {ESC}).
1122  * IN assertion: the fields Freq of dyn_ltree are set.
1123  */
1125  deflate_state *s;
1126 {
1127  /* black_mask is the bit mask of black-listed bytes
1128  * set bits 0..6, 14..25, and 28..31
1129  * 0xf3ffc07f = binary 11110011111111111100000001111111
1130  */
1131  unsigned long black_mask = 0xf3ffc07fUL;
1132  int n;
1133 
1134  /* Check for non-textual ("black-listed") bytes. */
1135  for (n = 0; n <= 31; n++, black_mask >>= 1)
1136  if ((black_mask & 1) && (s->dyn_ltree[n].Freq != 0))
1137  return Z_BINARY;
1138 
1139  /* Check for textual ("white-listed") bytes. */
1140  if (s->dyn_ltree[9].Freq != 0 || s->dyn_ltree[10].Freq != 0
1141  || s->dyn_ltree[13].Freq != 0)
1142  return Z_TEXT;
1143  for (n = 32; n < LITERALS; n++)
1144  if (s->dyn_ltree[n].Freq != 0)
1145  return Z_TEXT;
1146 
1147  /* There are no "black-listed" or "white-listed" bytes:
1148  * this stream either is empty or has tolerated ("gray-listed") bytes only.
1149  */
1150  return Z_BINARY;
1151 }
1152 
1153 /* ===========================================================================
1154  * Reverse the first len bits of a code, using straightforward code (a faster
1155  * method would use a table)
1156  * IN assertion: 1 <= len <= 15
1157  */
1158 local unsigned bi_reverse(code, len)
1159  unsigned code; /* the value to invert */
1160  int len; /* its bit length */
1161 {
1162  register unsigned res = 0;
1163  do {
1164  res |= code & 1;
1165  code >>= 1, res <<= 1;
1166  } while (--len > 0);
1167  return res >> 1;
1168 }
1169 
1170 /* ===========================================================================
1171  * Flush the bit buffer, keeping at most 7 bits in it.
1172  */
1174  deflate_state *s;
1175 {
1176  if (s->bi_valid == 16) {
1177  put_short(s, s->bi_buf);
1178  s->bi_buf = 0;
1179  s->bi_valid = 0;
1180  } else if (s->bi_valid >= 8) {
1181  put_byte(s, (Byte)s->bi_buf);
1182  s->bi_buf >>= 8;
1183  s->bi_valid -= 8;
1184  }
1185 }
1186 
1187 /* ===========================================================================
1188  * Flush the bit buffer and align the output on a byte boundary
1189  */
1191  deflate_state *s;
1192 {
1193  if (s->bi_valid > 8) {
1194  put_short(s, s->bi_buf);
1195  } else if (s->bi_valid > 0) {
1196  put_byte(s, (Byte)s->bi_buf);
1197  }
1198  s->bi_buf = 0;
1199  s->bi_valid = 0;
1200 #ifdef ZLIB_DEBUG
1201  s->bits_sent = (s->bits_sent+7) & ~7;
1202 #endif
1203 }
#define local
Definition: zutil.h:37
local void compress_block(deflate_state *s, const ct_data *ltree, const ct_data *dtree)
Definition: trees.c:1064
local const int extra_dbits[D_CODES]
Definition: trees.c:66
#define OF(args)
Definition: zconf.h:292
#define Tracecv(c, x)
Definition: zutil.h:253
#define Dad
Definition: deflate.h:81
ush FAR ushf
Definition: zutil.h:46
const intf * extra_bits
Definition: trees.c:119
#define STORED_BLOCK
Definition: zutil.h:72
#define BL_CODES
Definition: deflate.h:42
struct static_tree_desc_s static_tree_desc
Definition: deflate.h:84
local int detect_data_type(deflate_state *s)
Definition: trees.c:1124
#define Z_UNKNOWN
Definition: zlib.h:206
void ZLIB_INTERNAL _tr_align(deflate_state *s)
Definition: trees.c:896
#define MAX_BITS
Definition: deflate.h:48
#define Assert(cond, msg)
Definition: zutil.h:248
#define END_BLOCK
Definition: trees.c:50
#define SMALLEST
Definition: trees.c:422
#define Tracev(x)
Definition: zutil.h:250
local void pqdownheap(deflate_state *s, ct_data *tree, int k)
Definition: trees.c:451
local void gen_codes(ct_data *tree, int max_code, ushf *bl_count)
Definition: trees.c:572
local void init_block(deflate_state *s)
Definition: trees.c:407
#define LENGTH_CODES
Definition: deflate.h:30
#define REP_3_6
Definition: trees.c:53
#define Z_FIXED
Definition: zlib.h:199
#define smaller(tree, n, m, depth)
Definition: trees.c:441
#define REPZ_11_138
Definition: trees.c:59
#define put_short(s, w)
Definition: trees.c:174
local void gen_bitlen(deflate_state *s, tree_desc *desc)
Definition: trees.c:486
local unsigned bi_reverse(unsigned code, int len)
Definition: trees.c:1158
#define LITERALS
Definition: deflate.h:33
local void send_all_trees(deflate_state *s, int lcodes, int dcodes, int blcodes)
Definition: trees.c:834
#define Buf_size
Definition: deflate.h:51
local const static_tree_desc static_l_desc
Definition: trees.c:125
#define Code
Definition: deflate.h:80
void ZLIB_INTERNAL _tr_init(deflate_state *s)
Definition: trees.c:379
#define MAX_BL_BITS
Definition: trees.c:47
#define send_bits(s, value, length)
Definition: trees.c:211
#define HEAP_SIZE
Definition: deflate.h:45
#define Len
Definition: deflate.h:82
#define put_byte(s, c)
Definition: deflate.h:281
void ZLIB_INTERNAL _tr_flush_bits(deflate_state *s)
Definition: trees.c:886
local const int extra_lbits[LENGTH_CODES]
Definition: trees.c:63
local void tr_static_init()
Definition: trees.c:232
local const uch bl_order[BL_CODES]
Definition: trees.c:72
#define Z_BINARY
Definition: zlib.h:203
local void send_tree(deflate_state *s, ct_data *tree, int max_code)
Definition: trees.c:748
void ZLIB_INTERNAL _tr_stored_block(deflate_state *s, charf *buf, ulg stored_len, int last)
Definition: trees.c:863
#define pqremove(s, tree, top)
Definition: trees.c:430
int FAR intf
Definition: zconf.h:403
int ZLIB_INTERNAL _tr_tally(deflate_state *s, unsigned dist, unsigned lc)
Definition: trees.c:1014
local void scan_tree(deflate_state *s, ct_data *tree, int max_code)
Definition: trees.c:703
#define d_code(dist)
Definition: deflate.h:308
unsigned char uch
Definition: zutil.h:43
unsigned long ulg
Definition: zutil.h:47
local void bi_windup(deflate_state *s)
Definition: trees.c:1190
#define Freq
Definition: deflate.h:79
local void build_tree(deflate_state *s, tree_desc *desc)
Definition: trees.c:615
local int build_bl_tree(deflate_state *s)
Definition: trees.c:799
#define STATIC_TREES
Definition: zutil.h:73
local const static_tree_desc static_bl_desc
Definition: trees.c:131
void ZLIB_INTERNAL _tr_flush_block(deflate_state *s, charf *buf, ulg stored_len, int last)
Definition: trees.c:911
const ct_data * static_tree
Definition: trees.c:118
local const static_tree_desc static_d_desc
Definition: trees.c:128
#define D_CODES
Definition: deflate.h:39
#define REPZ_3_10
Definition: trees.c:56
local const int extra_blbits[BL_CODES]
Definition: trees.c:69
#define DYN_TREES
Definition: zutil.h:74
#define Z_TEXT
Definition: zlib.h:204
#define send_code(s, c, tree)
Definition: trees.c:161
#define ZLIB_INTERNAL
Definition: zutil.h:19
local void bi_flush(deflate_state *s)
Definition: trees.c:1173
char FAR charf
Definition: zconf.h:402
#define L_CODES
Definition: deflate.h:36